Beta Function:
The beta function
B(m,n) = $\int_0^1$ xm-1(1-x)n-1 dx
converges when m,n >0.
Gamma Function:
The gamma function
Γ(n) = $\int_0^\infty$ e-xxn-1dx
converges when n >0.
Properties of Beta and Gamma Functions:
The list of the properties of beta and gamma functions is given below:
P1: B(m,n) = B(n,m)
P2: B(m,n) = 2$\int_0^{\pi/2}$ sin2m-1θ cos2n-1θ dθ.
P3: B(m,n) = $\int_0^{\infty} \dfrac{x^{m-1}}{(1+x)^{m+n}}dx$ = $\int_0^{\infty} \dfrac{x^{n-1}}{(1+x)^{m+n}}dx$.
P4: B(m,n) = $\int_0^1 \dfrac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}}dx$.
P5: Γ(n+1) = nΓ(n)
P6: Γ(n+1) = n!
P7: B(m,n) = $\dfrac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
P8: Γ(n)Γ(1-n) = cosec mπ, 0<m<1.
Example1:
Show that I = $\int_0^{\pi/2}$ sinmx cosnx dx converges if m>-1 and n>-1.
Answer:
$\int_0^{\pi/2}$ sinmx cosnx dx
= 1/2 × 2 $\int_0^{\pi/2}$ sin2(m/2 +1/2)-1x cos2(n/2 +1/2)-1x dx
= 1/2 B(m/2 +1/2, n/2 +1/2) by P2
So the given integral I converges if m/2 +1/2>0 and n/2 +1/2>0.
⇒ m>-1 and n>-1.
Example2:
Find I = $\int_0^{\pi/2} \sqrt{\tan x} dx$.
Answer:
As tanx=sinx/cosx, we have
I = $\int_0^{\pi/2}$ sin1/2x cos-1/2x dx
= 1/2 × 2$\int_0^{\pi/2}$ sin2×3/4-1x cos2×1/4-1x dx
= 1/2 B(3/4, 1/4) by P2
= $\dfrac{1}{2} \dfrac{\Gamma(\frac{3}{4}) \Gamma(\frac{1}{4})}{\Gamma(1)}$ by P7
= $\dfrac{1}{2} \Gamma(\frac{1}{4}) \Gamma(1-\frac{1}{4})$
= 1/2 cosec(π/4) by P8
= π/√2.
Example3:
Find the value of gamma 1/2, that is, find Γ(1/2).
Answer:
Putting m=1/2 and n=1/2 in the above property P7, we get that
$B(\frac{1}{2}, \frac{1}{2})=\dfrac{\Gamma(\frac{1}{2}) \Gamma(\frac{1}{2})}{\Gamma(1)}$
⇒ $\Gamma(\frac{1}{2}) = \sqrt{B(\frac{1}{2}, \frac{1}{2})}$ …(*)
Now, by P2, we obtain that
$B(\frac{1}{2}, \frac{1}{2})$ = 2 $\int_0^{\pi/2}$ sin2×1/2-1θ cos2×1/2-1θ dθ
= 2 $\int_0^{\pi/2}$ dθ
= π
So from (*), we get that Γ(1/2) =√π.
Example 4:
Show that $\int_1^\infty$ x-m-1(logx)n dx converges if m>0 and n>-1.
Answer:
Put x=ez
∴ dx= ezdz
x | 1 | ∞ |
z | 0 | ∞ |
So $\int_0^\infty$ x-m-1(logx)n dx
= $\int_0^\infty$ e-mz-z zn ez dz
= $\int_0^\infty$ e-mz zn dz
= $\int_0^\infty$ e-mz z(n+1)-1 dz
= $\dfrac{\Gamma(n+1)}{m^{n+1}}$; it exists when n+1>0 and m>0.
So the given improper integral converges if m>0 and n>-1.
ALSO READ:
Abel’s Theorem of Series Convergence
Rolle’s Theorem Questions-Answers